Massive Expansion of Gypsy-Like Retrotransposons in Microbotryum Fungi
نویسندگان
چکیده
Transposable elements (TEs) are selfish, autonomously replicating DNA sequences that constitute a major component of eukaryotic genomes and contribute to genome evolution through their movement and amplification. Many fungal genomes, including the anther-smut fungi in the basidiomycete genus Microbotryum, have genome defense mechanisms, such as repeat-induced point mutation (RIP), which hypermutate repetitive DNA and limit TE activity. Little is known about how hypermutation affects the tempo of TE activity and their sequence evolution. Here we report the identification of a massive burst-like expansion of Gypsy-like retrotransposons in a strain of Microbotryum. This TE expansion evidently occurred in the face of RIP-like hypermutation activity. By examining the fitness of individual TE insertion variants, we found that RIP-like mutations impair TE fitness and limit proliferation. Our results provide evidence for a punctuated pattern of TE expansion in a fungal genome, similar to that observed in animals and plants. While targeted hypermutation is often thought of as an effective protection against mobile element activity, our findings suggest that active TEs can persist and undergo selection while they proliferate in genomes that have RIP-like defenses.
منابع مشابه
Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium.
The DNA content of eukaryotic nuclei (C-value) varies approximately 200,000-fold, but there is only a approximately 20-fold variation in the number of protein-coding genes. Hence, most C-value variation is ascribed to the repetitive fraction, although little is known about the evolutionary dynamics of the specific components that lead to genome size variation. To understand the modes and mechan...
متن کاملPhylogenetic relationships of reverse transcriptase and RNase H sequences and aspects of genome structure in the gypsy group of retrotransposons.
The gypsy group of long-terminal-repeat retrotransposons contains elements having the same order of enzyme domains in the pol gene as do retroviruses. Elements in the gypsy group are now known from yeast, filamentous fungi, plants, insects, and echinoids. Reverse transcriptase and RNase H amino acid sequences from elements in the gypsy group--including the recently described SURL elements, TED,...
متن کاملRecent and massive expansion of the mating-type-specific region in the smut fungus Microbotryum.
The presence of large genomic regions with suppressed recombination (SR) is a key shared property of some sex- and mating-type determining (mat) chromosomes identified to date in animals, plants, and fungi. Why such regions form and how they evolve remain central questions in evolutionary genetics. The smut fungus Microbotryum lychnis-dioicae is a basidiomycete fungus in which dimorphic mat chr...
متن کاملA ricle Convergent Evolution of Ribonuclease H in LTR Retrotransposons and Retroviruses
Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to...
متن کاملConvergent Evolution of Ribonuclease H in LTR Retrotransposons and Retroviruses
Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to...
متن کامل